

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Terms of Use

This software was developed by employees of the National Institute of
Standards and Technology [http://www.nist.gov/] (NIST [http://www.nist.gov/]), an agency of the Federal Government and
is being made available as a public service. Pursuant to title 17 United
States Code Section 105 [https://www.copyright.gov/title17/92chap1.html#105], works of NIST [http://www.nist.gov/] employees are not subject to
copyright protection in the United States. This software may be subject to
foreign copyright. Permission in the United States and in foreign
countries, to the extent that NIST [http://www.nist.gov/] may hold copyright, to use, copy,
modify, create derivative works, and distribute this software and its
documentation without fee is hereby granted on a non-exclusive basis,
provided that this notice and disclaimer of warranty appears in all copies.

THE SOFTWARE IS PROVIDED “AS IS” WITHOUT ANY WARRANTY OF ANY KIND, EITHER
EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY
WARRANTY THAT THE SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT THE DOCUMENTATION WILL
CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE SOFTWARE WILL BE ERROR
FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT
LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT
OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR
NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT
INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR
NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE
SOFTWARE OR SERVICES PROVIDED HEREUNDER.

 [![name](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/Training_ALIGNN_model_example.ipynb)
![alt text](https://github.com/usnistgov/alignn/actions/workflows/main.yml/badge.svg)
[![codecov](https://codecov.io/gh/usnistgov/alignn/branch/main/graph/badge.svg?token=S5X4OYC80V)](https://codecov.io/gh/usnistgov/alignn)
[![PyPI version](https://badge.fury.io/py/alignn.svg)](https://badge.fury.io/py/alignn)
![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/usnistgov/alignn)
![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/usnistgov/alignn)
![GitHub commit activity](https://img.shields.io/github/commit-activity/y/usnistgov/alignn)
[![Downloads](https://pepy.tech/badge/alignn)](https://pepy.tech/project/alignn)
<!–
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/atomistic-line-graph-neural-network-for/formation-energy-on-materials-project)](https://paperswithcode.com/sota/formation-energy-on-materials-project?p=atomistic-line-graph-neural-network-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/atomistic-line-graph-neural-network-for/band-gap-on-materials-project)](https://paperswithcode.com/sota/band-gap-on-materials-project?p=atomistic-line-graph-neural-network-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/atomistic-line-graph-neural-network-for/formation-energy-on-qm9)](https://paperswithcode.com/sota/formation-energy-on-qm9?p=atomistic-line-graph-neural-network-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/atomistic-line-graph-neural-network-for/formation-energy-on-jarvis-dft-formation)](https://paperswithcode.com/sota/formation-energy-on-jarvis-dft-formation?p=atomistic-line-graph-neural-network-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/atomistic-line-graph-neural-network-for/band-gap-on-jarvis-dft)](https://paperswithcode.com/sota/band-gap-on-jarvis-dft?p=atomistic-line-graph-neural-network-for)
–>

Table of Contents
* [Introduction](#intro)
* [Installation](#install)
* [Examples](#example)
* [Pre-trained models](#pretrained)
* [Quick start using colab](#colab)
* [JARVIS-ALIGNN webapp](#webapp)
* [ALIGNN-FF & ASE Calculator](#alignnff)
* [Peformances on a few datasets](#performances)
* [Useful notes](#notes)
* [References](#refs)
* [How to contribute](#contrib)
* [Correspondence](#corres)
* [Funding support](#fund)

ALIGNN (Introduction)
The Atomistic Line Graph Neural Network (https://www.nature.com/articles/s41524-021-00650-1) introduces a new graph convolution layer that explicitly models both two and three body interactions in atomistic systems.

This is achieved by composing two edge-gated graph convolution layers, the first applied to the atomistic line graph L(g) (representing triplet interactions) and the second applied to the atomistic bond graph g (representing pair interactions).

The atomistic graph g consists of a node for each atom i (with atom/node representations h_i), and one edge for each atom pair within a cutoff radius (with bond/pair representations e_{ij}).

The atomistic line graph L(g) represents relationships between atom triplets: it has nodes corresponding to bonds (sharing representations e_{ij} with those in g) and edges corresponding to bond angles (with angle/triplet representations t_{ijk}).

The line graph convolution updates the triplet representations and the pair representations; the direct graph convolution further updates the pair representations and the atom representations.

![ALIGNN layer schematic](https://github.com/usnistgov/alignn/blob/main/alignn/tex/alignn2.png)

Installation
————————-
First create a conda environment:
Install miniconda environment from https://conda.io/miniconda.html
Based on your system requirements, you’ll get a file something like ‘Miniconda3-latest-XYZ’.

Now,

`
bash Miniconda3-latest-Linux-x86_64.sh (for linux)
bash Miniconda3-latest-MacOSX-x86_64.sh (for Mac)
`
Download 32/64 bit python 3.10 miniconda exe and install (for windows)
Now, let’s make a conda environment, say “version”, choose other name as you like::
`
conda create --name version python=3.10
source activate version
`

optional GPU dependencies

If you need CUDA support, it’s best to install PyTorch and DGL before installing alignn to ensure that you get a CUDA-enabled version of DGL.

To [install the stable release of PyTorch] on linux with cudatoolkit 11.8 run

`
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
`

Then [install the matching DGL version](https://www.dgl.ai/pages/start.html)

`
conda install -c dglteam/label/cu118 dgl
`

Some of our models may not be stable with the latest DGL release (v1.1.0) so you may wish to install v1.0.2 instead:

`
conda install -c dglteam/label/cu118 dgl==1.0.2.cu118
`

Method 1 (editable in-place install)

You can install a development version of alignn by cloning the repository and installing in place with pip:

`
git clone https://github.com/usnistgov/alignn
cd alignn
python -m pip install -e .
`

Method 2 (using pypi):

As an alternate method, ALIGNN can also be installed using pip command as follows:
`
python -m pip install alignn
`

Examples
———

Dataset
The main script to train model is train_folder.py. A user needs at least the following info to train a model: 1) id_prop.csv with name of the file and corresponding value, 2) config_example.json a config file with training and hyperparameters.

Users can keep their structure files in POSCAR, .cif, .xyz or .pdb files in a directory. In the examples below we will use POSCAR format files. In the same directory, there should be an id_prop.csv file.

In this directory, id_prop.csv, the filenames, and correponding target values are kept in comma separated values (csv) format.

Here is an example of training OptB88vdw bandgaps of 50 materials from JARVIS-DFT database. The example is created using the [generate_sample_data_reg.py](https://github.com/usnistgov/alignn/blob/main/alignn/examples/sample_data/scripts/generate_sample_data_reg.py) script. Users can modify the script for more than 50 data, or make their own dataset in this format. For list of available datasets see [Databases](https://jarvis-tools.readthedocs.io/en/master/databases.html).

The dataset in split in 80:10:10 as training-validation-test set (controlled by train_ratio, val_ratio, test_ratio) . To change the split proportion and other parameters, change the [config_example.json](https://github.com/usnistgov/alignn/blob/main/alignn/examples/sample_data/config_example.json) file. If, users want to train on certain sets and val/test on another dataset, set n_train, n_val, n_test manually in the config_example.json and also set keep_data_order as True there so that random shuffle is disabled.

A brief help guide (-h) can be obtained as follows.

`
train_folder.py -h
`
Regression example
Now, the model is trained as follows. Please increase the batch_size parameter to something like 32 or 64 in config_example.json for general trainings.

`
train_folder.py --root_dir "alignn/examples/sample_data" --config "alignn/examples/sample_data/config_example.json" --output_dir=temp
`
Classification example
While the above example is for regression, the follwoing example shows a classification task for metal/non-metal based on the above bandgap values. We transform the dataset
into 1 or 0 based on a threshold of 0.01 eV (controlled by the parameter, classification_threshold) and train a similar classification model. Currently, the script allows binary classification tasks only.
`
train_folder.py --root_dir "alignn/examples/sample_data" --classification_threshold 0.01 --config "alignn/examples/sample_data/config_example.json" --output_dir=temp
`

Multi-output model example
While the above example regression was for single-output values, we can train multi-output regression models as well.
An example is given below for training formation energy per atom, bandgap and total energy per atom simulataneously. The script to generate the example data is provided in the script folder of the sample_data_multi_prop. Another example of training electron and phonon density of states is provided also.
`
train_folder.py --root_dir "alignn/examples/sample_data_multi_prop" --config "alignn/examples/sample_data/config_example.json" --output_dir=temp
`
Automated model training
Users can try training using multiple example scripts to run multiple dataset (such as JARVIS-DFT, Materials project, QM9_JCTC etc.). Look into the [alignn/scripts/train_*.py](https://github.com/usnistgov/alignn/tree/main/alignn/scripts) folder. This is done primarily to make the trainings more automated rather than making folder/ csv files etc.
These scripts automatically download datasets from [Databases in jarvis-tools](https://jarvis-tools.readthedocs.io/en/master/databases.html) and train several models. Make sure you specify your specific queuing system details in the scripts.

Using pre-trained models
————————-

All the trained models are distributed on [Figshare](https://figshare.com/projects/ALIGNN_models/126478.

The [pretrained.py script](https://github.com/usnistgov/alignn/blob/develop/alignn/pretrained.py) can be applied to use them. These models can be used to directly make predictions.

A brief help section (-h) is shown using:

`
pretrained.py -h
`
An example of prediction formation energy per atom using JARVIS-DFT dataset trained model is shown below:

`
pretrained.py --model_name jv_formation_energy_peratom_alignn --file_format poscar --file_path alignn/examples/sample_data/POSCAR-JVASP-10.vasp
`

Quick start using GoogleColab notebook example
———————————————–

The following [notebook](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/Training_ALIGNN_model_example.ipynb) provides an example of 1) installing ALIGNN model, 2) training the example data and 3) using the pretrained models. For this example, you don’t need to install alignn package on your local computer/cluster, it requires a gmail account to login. Learn more about Google colab [here](https://colab.research.google.com/notebooks/intro.ipynb).

[![name](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/Training_ALIGNN_model_example.ipynb)

Web-app
————

A basic web-app is for direct-prediction available at [JARVIS-ALIGNN app](https://jarvis.nist.gov/jalignn/). Given atomistic structure in POSCAR format it predict formation energy, total energy per atom and bandgap using data trained on JARVIS-DFT dataset.

![JARVIS-ALIGNN](https://github.com/usnistgov/alignn/blob/develop/alignn/tex/jalignn.PNG)

ALIGNN-FF
————————-

[ASE calculator](https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html) provides interface to various codes. An example for ALIGNN-FF is give below. Note that there are multiple pretrained ALIGNN-FF models available, here we use the deafult_path model. As more accurate models are developed, they will be made available as well:

```
from alignn.ff.ff import AlignnAtomwiseCalculator,default_path
model_path = default_path()
calc = AlignnAtomwiseCalculator(path=model_path)

from ase import Atom, Atoms
import numpy as np
import matplotlib.pyplot as plt

lattice_params = np.linspace(3.5, 3.8)
fcc_energies = []
ready = True
for a in lattice_params:



	atoms = Atoms([Atom(‘Cu’, (0, 0, 0))],
	

	cell=0.5 * a * np.array([[1.0, 1.0, 0.0],
	[0.0, 1.0, 1.0],
[1.0, 0.0, 1.0]]),








pbc=True)





atoms.set_tags(np.ones(len(atoms)))
atoms.calc = calc
e = atoms.get_potential_energy()
fcc_energies.append(e)




import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(lattice_params, fcc_energies)
plt.title(‘1x1x1’)
plt.xlabel(‘Lattice constant ($AA$)’)
plt.ylabel(‘Total energy (eV)’)
plt.show()
```

To train ALIGNN-FF use train_folder_ff.py script which uses atomwise_alignn model:

AtomWise prediction example which looks for similar setup as before but unstead of id_prop.csv, it requires id_prop.json file (see example in the sample_data_ff directory). Note ALIGNN-FF requires energy stored as energy per atom:

`
train_folder_ff.py --root_dir "alignn/examples/sample_data_ff" --config "alignn/examples/sample_data_ff/config_example_atomwise.json" --output_dir=temp
`

A pretrained ALIGNN-FF (under active development right now) can be used for predicting several properties, such as:

`
run_alignn_ff.py --file_path alignn/examples/sample_data/POSCAR-JVASP-10.vasp --task="unrelaxed_energy"
run_alignn_ff.py --file_path alignn/examples/sample_data/POSCAR-JVASP-10.vasp --task="optimize"
run_alignn_ff.py --file_path alignn/examples/sample_data/POSCAR-JVASP-10.vasp --task="ev_curve"
`

To know about other tasks, type.

`
run_alignn_ff.py -h
`

Performances

Please refer to [JARVIS-Leaderboard](https://pages.nist.gov/jarvis_leaderboard/) to check the performance of ALIGNN models on several databases.

1) On JARVIS-DFT 2021 dataset (classification)

Model | Threshold | ALIGNN |

---	———————–	---------------
Metal/non-metal classifier (OPT)	0.01 eV	0.92
Metal/non-metal classifier (MBJ)	0.01 eV	0.92
Magnetic/non-Magnetic classifier	0.05 µB	0.91
High/low SLME	10 %	0.83
High/low spillage	0.1	0.80
Stable/unstable (ehull)	0.1 eV	0.94
High/low-n-Seebeck	-100 µVK⁻¹	0.88
High/low-p-Seebeck	100 µVK⁻¹	0.92
High/low-n-powerfactor	1000 µW(mK²)⁻¹	0.74
High/low-p-powerfactor	1000µW(mK²)⁻¹	0.74

2) On JARVIS-DFT 2021 dataset (regression)

Property | Units | MAD | CFID | CGCNN | ALIGNN | MAD: MAE |

--	—————————	---------------	—————	--------------	—————	-----------------
Formation energy	eV(atom)⁻¹	0.86	0.14	0.063	0.033	26.06
Bandgap (OPT)	eV	0.99	0.30	0.20	0.14	7.07
Total energy	eV(atom)⁻¹	1.78	0.24	0.078	0.037	48.11
Ehull	eV	1.14	0.22	0.17	0.076	15.00
Bandgap (MBJ)	eV	1.79	0.53	0.41	0.31	5.77
Kv	GPa	52.80	14.12	14.47	10.40	5.08
Gv	GPa	27.16	11.98	11.75	9.48	2.86
Mag. mom	µB	1.27	0.45	0.37	0.26	4.88
SLME (%)	No unit	10.93	6.22	5.66	4.52	2.42
Spillage	No unit	0.52	0.39	0.40	0.35	1.49
Kpoint-length	Å	17.88	9.68	10.60	9.51	1.88
Plane-wave cutoff	eV	260.4	139.4	151.0	133.8	1.95
єx (OPT)	No unit	57.40	24.83	27.17	20.40	2.81
єy (OPT)	No unit	57.54	25.03	26.62	19.99	2.88
єz (OPT)	No unit	56.03	24.77	25.69	19.57	2.86
єx (MBJ)	No unit	64.43	30.96	29.82	24.05	2.68
єy (MBJ)	No unit	64.55	29.89	30.11	23.65	2.73
єz (MBJ)	No unit	60.88	29.18	30.53	23.73	2.57
є (DFPT:elec+ionic)	No unit	45.81	43.71	38.78	28.15	1.63
Max. piezoelectric strain coeff (dij)	CN⁻¹	24.57	36.41	34.71	20.57	1.19
Max. piezo. stress coeff (eij)	Cm⁻²	0.26	0.23	0.19	0.147	1.77
Exfoliation energy	meV(atom)⁻¹	62.63	63.31	50.0	51.42	1.22
Max. EFG	10²¹ Vm⁻²	43.90	24.54	24.7	19.12	2.30
avg. me	electron mass unit	0.22	0.14	0.12	0.085	2.59
avg. mh	electron mass unit	0.41	0.20	0.17	0.124	3.31
n-Seebeck	µVK⁻¹	113.0	56.38	49.32	40.92	2.76
n-PF	µW(mK²)⁻¹	697.80	521.54	552.6	442.30	1.58
p-Seebeck	µVK⁻¹	166.33	62.74	52.68	42.42	3.92
p-PF	µW(mK²)⁻¹	691.67	505.45	560.8	440.26	1.57

3) On Materials project 2018 dataset

The results from models other than ALIGNN are reported as given in corresponding papers, not necessarily reproduced by us.

Prop | Unit | MAD | CFID | CGCNN | MEGNet | SchNet | ALIGNN | MAD:MAE |

-------------	—————	-------------	————–	--------------	—————	---------------	—————	----------------
Ef	eV(atom)⁻¹	0.93	0.104	0.039	0.028	0.035	0.022	42.27
Eg	eV	1.35	0.434	0.388	0.33	-	0.218	6.19

4) On QM9 dataset

Note the [issue](https://github.com/usnistgov/alignn/issues/54) related to QM9 dataset. The results from models other than ALIGNN are reported as given in corresponding papers, not necessarily reproduced by us. These models were trained with same parameters as solid-state databases but for 1000 epochs.

Target | Units | SchNet | MEGNet | DimeNet++ | ALIGNN |

:------:	——-	--------	———	-----------	——–
HOMO	eV	0.041	0.043	0.0246	0.0214
LUMO	eV	0.034	0.044	0.0195	0.0195
Gap	eV	0.063	0.066	0.0326	0.0381
ZPVE	eV	0.0017	0.00143	0.00121	0.0031
µ	Debye	0.033	0.05	0.0297	0.0146
α	Bohr³	0.235	0.081	0.0435	0.0561
R²	Bohr²	0.073	0.302	0.331	0.5432
U0	eV	0.014	0.012	0.00632	0.0153
U	eV	0.019	0.013	0.00628	0.0144
H	eV	0.014	0.012	0.00653	0.0147
G	eV	0.014	0.012	0.00756	0.0144

5) On hMOF dataset

Property | Unit | MAD | MAE | MAD:MAE | R² | RMSE |

--------------------	—————–	---------	——–	---------	——-	--------
Grav. surface area	m²g⁻¹	1430.82	91.15	15.70	0.99	180.89
Vol. surface area	m²cm⁻³	561.44	107.81	5.21	0.91	229.24
Void fraction	No unit	0.16	0.017	9.41	0.98	0.03
LCD	Å	3.44	0.75	4.56	0.83	1.83
PLD	Å	3.55	0.92	3.86	0.78	2.12
All adsp	mol kg⁻¹	1.70	0.18	9.44	0.95	0.49
Adsp at 0.01bar	mol kg⁻¹	0.12	0.04	3.00	0.77	0.11
Adsp at 2.5bar	mol kg⁻¹	2.16	0.48	4.50	0.90	0.97

6) On qMOF dataset

MAE on electronic bandgap 0.20 eV

7) On OMDB dataset

coming soon!

8) On HOPV dataset

coming soon!

9) On QETB dataset

coming soon!

10) On OpenCatalyst dataset

[On 10k dataset](https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md#is2re-models):

DataSplit | CGCNN | DimeNet | SchNet | DimeNet++ | ALIGNN | MAD: MAE |

|--|—————————|---------------|—————|--------------|—————|-----------------|
| 10k | 0.988 | 1.0117 | 1.059 | 0.8837 | 0.61 | - |

Useful notes (based on some of the queries we received)
———————————————————

	If you are using GPUs, make sure you have a compatible dgl-cuda version installed, for example: dgl-cu101 or dgl-cu111, so e.g. pip install dgl-cu111 .

	The undirected graph and its line graph is constructured in jarvis-tools package using [jarvis.core.graphs](https://github.com/usnistgov/jarvis/blob/master/jarvis/core/graphs.py#L197)

	While comnventional ‘.cif’ and ‘.pdb’ files can be read using jarvis-tools, for complex files you might have to install cif2cell and pytraj respectively i.e.`pip install cif2cell==2.0.0a3` and conda install -c ambermd pytraj.

	Make sure you use batch_size as 32 or 64 for large datasets, and not 2 as given in the example config file, else it will take much longer to train, and performnce might drop a lot.

	Note that train_folder.py and pretrained.py in alignn folder are actually python executable scripts. So, even if you don’t provide absolute path of these scripts, they should work.

	Learn about the issue with QM9 results here: https://github.com/usnistgov/alignn/issues/54

	Make sure you have pandas version as 1.2.3.

References
—————–

	[Atomistic Line Graph Neural Network for improved materials property predictions](https://www.nature.com/articles/s41524-021-00650-1)

	[Prediction of the Electron Density of States for Crystalline Compounds with Atomistic Line Graph Neural Networks (ALIGNN)](https://link.springer.com/article/10.1007/s11837-022-05199-y)

	[Recent advances and applications of deep learning methods in materials science](https://www.nature.com/articles/s41524-022-00734-6)

	[Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning](https://arxiv.org/abs/2205.00060)

	[A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials](https://arxiv.org/abs/2205.08366)

	[Graph neural network predictions of metal organic framework CO2 adsorption properties](https://www.sciencedirect.com/science/article/pii/S092702562200163X)

	[Rapid Prediction of Phonon Structure and Properties using an Atomistic Line Graph Neural Network (ALIGNN)](https://arxiv.org/abs/2207.12510)

	[Unified graph neural network force-field for the periodic table](https://arxiv.org/abs/2209.05554)

Please see detailed publications list [here](https://jarvis-tools.readthedocs.io/en/master/publications.html).

How to contribute
—————–

For detailed instructions, please see [Contribution instructions](https://github.com/usnistgov/jarvis/blob/master/Contribution.rst)

Correspondence
——————–

Please report bugs as Github issues (https://github.com/usnistgov/alignn/issues) or email to kamal.choudhary@nist.gov.

Funding support
——————–

NIST-MGI (https://www.nist.gov/mgi).

Code of conduct

Please see [Code of conduct](https://github.com/usnistgov/jarvis/blob/master/CODE_OF_CONDUCT.md)

 —
name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

—

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:
1. Go to ‘…’
2. Click on ‘….’
3. Scroll down to ‘….’
4. See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

	Desktop (please complete the following information):
	
	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

	Smartphone (please complete the following information):
	
	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

 —
name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

—

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

